

FIRST DELIVERY PROJECT

David Woerner

NASA/Jet Propulsion Laboratory david.f.woerner@jpl.nasa.gov

Pasadena, CA Sep 15, 1997

First Delivery Performance

First Delivery Performance Relative to Mars Pathfinder

 Comm capability 	1000 x improvement
• Computer perf	10-20x improvement
 Avionics mass 	2x decrease
 Avionics vol 	4x decrease
• Digital elect pwr	10 x decrease
 Analog elect pwr 	2x decrease

Core Spacecraft for Next Wave

DFW-3

First Delivery

X2000

- Flight System Micro-electronics
 - Computer, memory, & mass memory
 - Neural Network
 - Digital Signal Processor
 - Power & Pyro Switching
 - Sensor/Instrument I/O
 - Scaleable, modular, long life
 - RAD hardened designs, parts, & materials
 - Low Temperature, low power
 - **Optical Comm**
- F/S and GND S/W with W.S:
 - Operating systems
 - Generic auto NAV, 3-Axis A/C
 - Generic F/S-GND autonomy
 - Generic F/S-GND science data processing
 - Generic GND CMD/TLM processing/display
- ARPS power source
- Hydrazine microthrusters and variable propellant regulators
- Other: Additional micro-electronic components, structure, thermal, propulsion, etc. as budget allows

X2000 First Delivery Block Diagram

Europa Orbiter; SEP Configuration

X2000

Europa Orbiter Baseline Configuration

X2000

X2000 Bus with Ti Frame, Exploded View

X2000 Packaging Solutions: Modular Architecture Adapts to Multi-Spacecraft Missions

X2000

- 2. Designed for Manufactability
- 3. Designed for Test & Integration
- 4. Expandable
- 5. Provides improved thermal, dynamics, radiation and EMI/EMC design

CHAMPOLLION

Champollion Lander

DFW-9 DJ Hunter 09/02/97

Power Microelectronics Technologies

X2000

Circuit

Protocol

Chip

DATA

BUS

I/F

Overview

Current Technology: PC Board packaging, discrete component control circuit, relay enable and command switches and SCR fire circuit for pyros

Target Technologies: 1. Mixed signal ASICs, 2. Power High Density Interconnect (PHDI) packaging, 3. modular fault tolerant design

Benefits: 1. Reduce mass and volume, 2. standard command interface, 3. Provides peak power at maximum load, 4. configurable to various power source characteristics

Impact of Fallback: Several kg mass increase, increase in volume

Key Issues: Laser vs. NSI Pyro technology, thermal design, fault tolerant control circuit

Advanced Radioisotope Power Source (ARPS) Technology

X2000

Overview

Current Technology: *Galileo/Cassini* heritage RTG with 6-7% efficiency

unicouple conversion

Target Technology: >20% conversion using either AMTEC

Benefits: Mass reduction, smaller quantity of radioisotope

Key Issues: lifetime; efficiency; radiator size; heat rejection temperature

Impact of Fallback: > 12 kg mass increase

3x Efficiency over RTG's 130 watts after 15 yrs Design is scaleable in 50W Units Uses Cassini GPHS

Optical Communications Technology

X2000

Overview

Current Technology: X/Ka-band RF telecommunications systems

Target Technology: 30-cm optical comm terminal, uplink &

downlink

Benefits: Dramatic increase in telemetry rate at mass and power levels equivalent to RF telecom system; see plot below

Key Issues: lifetime, system-level fault protection

Impact of Fallback: Reduction in science data returned

Technology Comparisons

X2000

MPF Technologies

- RF telecom (basically a buy)
- Attitude & Information Management S/S
- RAD6000 (LMFS absorbs \$2.5 M)
- Software/Autonomy
 - object-oriented FSW
 - Well-used COTS Tools
- Benign rad environment (200 rad)
- Some partners
- Select engineering processes
- Hydrazine RCS system
- Entry, Descent, & Landing (EDL)
 - critical sequence
 - airbags
 - rad rockets
 - aeroshell
- Reliability: class C, short mission
- Relied on heritage for many parts & materials
- Basically two instruments
- Bare-bones functionality, capability-driven, one customer
- Solar powered design
- Standard voltages
- MPF EM \$ ~ 104 M

1st delivery technologies

- Optical Comm
- AIM+ + AIM + PPS + Optical Correlator/Neural Net)
- PowerPC
- Software/Autonomy
 - object oriented
 - unified flight ground architecture
 - next generation autonomy
 - COTS Tools
- Rad hard parts & materials program (Mega-rads)
- A partnering hoedown
- Develop new processes
- Propulsion Technologies: bi-propellant, hydrazine microthrusters, etc
- No EDL
 - orbit injection sequences are critical
- Reliability: long-life, dual string
- Almost entirely new development
- Several instruments
- Science driven requirements, many technology enhancements, many customers
- Radioactive power supply (+ DOE interface)
- Push to low voltages
- lst delivery budget ~ \$86M